Коэффициенты Тейлора, ряд Тейлора

Определение

Если функция $f$ определена в некоторой окрестности точки $x_{0}$ и является бесконечно дифференцируемой (имеет в данной точке производные всех порядков), то степенной ряд вида $$\sum\limits_{n=0}^{\infty}a_{n}\left(x-x_{0}\right)^n$$ называется рядом Тейлора функции $f$ в окрестности точки $x_{0}$, где числа $$a_{n}=\frac{{f}^{\left(n \right)}\left(x_{0} \right)}{n!} \;\;\; \left(n=0,1,2,\ldots \right)$$ это коэффициенты Тейлора функции $f$ в окрестности точки $x_{0}$.

Спойлер

Представим в виде ряда Тейлора функцию $$f\left(x \right)=\begin{cases}&e^{\frac{-1}{x^{2}}},\;\;x\neq0\\&0,\;\;x=0\end{cases}$$

Найдем производные функции вне нуля: $${f}^{\left(1\right)}\left(x \right)=e^{\frac{-1}{x^{2}}}\cdot \frac{2}{x^{3}},$$ $${f}^{\left(2\right)}\left(x \right)=\left(\frac{4}{x^{6}}-\frac{6}{x^{4}} \right)e^{\frac{-1}{x^{2}}},$$ $$\ldots$$ $${f}^{\left(k\right)}\left(x\right)=e^{\frac{-1}{x^{2}}}Q_{3k}\left(\frac{1}{x}\right).$$

Рассмотрим производные функции в нуле. Докажем по индукции, что $${f}^{\left(k\right)}\left(0 \right)=0 \;\;\; \forall k \in N.$$ Имеем,

  1. ${f}^{\left(1\right)}\left(0 \right)=\lim\limits_{ n \to 0}\frac{e^{\frac{-1}{x^{2}}}}{x}=0.$
  2. ${f}^{\left(n\right)}\left(0 \right)=0 \;\;\; \forall n \in N.$
  3. ${f}^{\left(n+1\right)}\left(0 \right)=$$\lim\limits_{ n \to 0}\frac{{f}^{n}\left(x \right)-{f}^{n}\left(0 \right)}{x}=$$\lim\limits_{ n \to 0}\frac{1}{x}e^{\frac{-1}{x^{2}}}Q_{3k}\left(\frac{1}{x} \right)=$$0.$

Следовательно, для данной функции коэффициенты формулы Тейлора в точке $x_{0}$ равны нулю. Но, с другой стороны, $f\left(x \right)=e^{\frac{-1}{x^{2}}}\neq0,\;\;\; x\neq0$. Таким образом, функция не представима в виде своего ряда Тейлора.

[свернуть]

Сходимость ряда Тейлора к функции

Пусть функция $f\left(x\right)$ бесконечно дифференцируема в точке $x_{0}$. Поставим ей в соответствие формулу Тейлора: $$f\left(x\right)=\sum\limits_{n=0}^{n}\frac{{f}^{\left(n\right)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}+r_{n}\left(x\right),$$ где $r_{n}\left(x \right)$ — остаток в формуле Тейлора. Обозначим, $$S_{n}\left(x\right)=\sum\limits_{n=0}^{n}\frac{{f}^{\left(n \right)}\left(x_{0} \right)}{n!}\left(x-x_{0}\right)^{n},$$ где $S_{n}\left(x\right)$— частичная сумма данного ряда Тейлора данной функции. Следовательно, можем записать равенство: $$f\left(x \right)=S_{n}\left(x \right)+r_{n}\left(x \right).$$ Тогда для того, чтобы $\lim\limits_{ n \to \infty}s_{n}\left(x \right)=f\left(x\right)$, функция $f\left(x\right)$ на заданном интервале должна быть равной сумме своего ряда Тейлора.

Таким образом, для сходимости ряда Тейлора функции $f\left(x\right)$ к функции $f\left(x\right)$ на некотором интервале необходимо и достаточно , чтобы для всех $x$ из этого интервала ее остаточный член в формуле Тейлора стремился к нулю: $$\lim\limits_{ n \to \infty}r_{n}\left(x \right)=0. $$

Литература

Коэффициенты Тейлора

Предлагаю пройти Вам данный тест на закрепление материала по данной статье.


Таблица лучших: Коэффициенты Тейлора

максимум из 3 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *