М1818. Доказать неравенство с тремя параметрами

Задача из журнала «Квант» (2002 год, 3 выпуск)

Условие

Докажите неравенство $$\sqrt{\cfrac{a}{b+c}}+\sqrt{\cfrac{b}{c+a}}+\sqrt{\cfrac{c}{a+b}}>2,$$где $a>0, b>0, c>0$.

С.Нестеров

Решение

Рассмотрим функцию $$f(x,y,z)=\sqrt{\cfrac{x}{y+z}}+\sqrt{\cfrac{y}{z+x}}+\sqrt{\cfrac{z}{x+y}},$$ где $x>0, y>0, z>0$. Считая, без ограничения общности, $x\leqslant y \leqslant z$, докажем вначале неравенство $$f(x,y,z)\leqslant f(x,\cfrac{y+z}{2}, \cfrac{y+z}{2}). \tag{1}$$ Обозначив $\cfrac{z+y}{2}=\alpha, \cfrac{z-y}{2}=t$, перепишем $(1)$ в виде $$\phi (t)\geqslant \phi (0),\tag{2}$$ где $$\phi (t)=\sqrt{\cfrac{\alpha + t}{\alpha + x — t}}+\sqrt{\cfrac{\alpha — t}{\alpha + x + t}}.$$

Здесь $0\leqslant t \leqslant \alpha, \alpha \geqslant x$.

Докажем $(2)$. Имеем $$\phi^{\prime}(t)=(x+2a)\left (\cfrac{1}{(\alpha + t)^{\frac{1}{2} }(x+\alpha-t)^{\frac{3}{2}}} — \cfrac{1}{(\alpha — t)^{\frac{1}{2}}(x+\alpha +t)^{\frac{3}{2}}}\right ).$$ Очевидно, знак $\phi^{\prime}(t)$ совпадает со знаком функции $$\psi (t)=(\alpha — t)(x + \alpha + t)^{3}-(\alpha + t)(x+\alpha -t)^{3},$$ и любой нуль функции $\phi^{\prime} (t)$ также является нулем функции $\psi (t)$. Исследуем $\psi (t)$. Имеем: $\psi (t)$ — отличный от константы нечетный многочлен, степень которого не выше $3$. Следовательно, $\psi (t)$ имеет на положительной полуоси не более одного корня.

Получили: $\phi (t)$ может иметь внутри отрезка $[0,\alpha]$ не более одного экстремума. Но и этот экстремум не может быть минимумом, поскольку $\psi (\alpha)<0$.

Итак, $\phi (t) \geqslant min\{ \phi (0), \phi(\alpha)\} $. Но, поскольку $\alpha \geqslant x$, имеем $$\phi(0)=2\sqrt{\cfrac{\alpha}{\alpha + x}}\leqslant \sqrt{\cfrac{2\alpha}{x}}=\phi (\alpha).$$ Неравенство $(1)$ доказано.

(Выше мы ограничились необходимой нам информацией о производной; легко получить и полную информацию о ней. Именно, $\psi (t)$ — многочлен третьей степени; $\psi (t) = 0$, при $t = 0$ и при $$t^{2}=\cfrac{(x+\alpha)^{2}(2\alpha — x)}{3x+2\alpha}.$$ При этом $t^{2}<\alpha^{2}$ при $x>0, \alpha>0$. Значит исследуемая функция при любом $x, x < 0 < \alpha$, имеет экстремум на интервале $(0;\alpha)$.)

Вследствие $(1)$ для решения задачи достаточно доказать, что $$f_{1}(x)=\sqrt{\cfrac{x}{2\alpha}}+2\sqrt{\cfrac{\alpha}{x+\alpha}}> 2 \tag{3}$$ при $0<x\leqslant \alpha$.

Исследуем $f_{1}(x)$ на отрезке $[0;\alpha]$. Во внутренних точках этого отрезка знак $f^{\prime}_1(x)$ совпадает со знаком многочлена $P(x)=(x+\alpha)^{3}-8\alpha^{2}x$. Кроме того, любой нуль функции $f^{\prime}_{1}(x)$ является также нулем многочлена $P(x)$. Заметим что $P(\alpha)=0;$ помимо этого, $P(x)$ имеет корень на отрицательной полуоси. Следовательно, если $P(x_0)=0$ при $0<x_0<\alpha$, то при переходе через $x_0$ многочлен $P(x)$ меняет знак с $«+»$ на $«-»$. Поэтому $x_0$ — точка максимума функции $f_1(x)$.

Получили: $$f_{1}(x)>min\{f_{1}(0),f_{1}(\alpha)\}$$ при $0<x<\alpha$. Но $$f_{1}(\alpha)=\cfrac{3}{\sqrt{2}}>2=f_{1}(0).$$ Неравенство $(3)$ доказано.

(Легко видеть, что $P(x)=0$ при $x=\alpha$ и при $x=\alpha(-2\pm \sqrt{5})$. Значит исследуемая функция имеет экстремум на интервале $(0;\alpha)$.)

А.Ковальджи, С.Нестеров, В.Сендеров

М1818. Доказать неравенство с тремя параметрами: 2 комментария

Добавить комментарий для Igor Mazurok Отменить ответ

Ваш адрес email не будет опубликован. Обязательные поля помечены *