Processing math: 100%

M1611. Построение прямого угла на пересекающихся окружностях

Задача из журнала «Квант» М1611 ( 1997, выпуск №5)

Задача:

Две окружности пересекаются в точках A и B. Через точку A проведена прямая, вторично пересекающая первую окружность в точке C, а вторую — в точке D. Пусть M и N
— середины дуг BC и BD, не содержащих точку A, а K — середина отрезка CD. Докажите, что угол MKN прямой.
(Можно считать, что точки C и D лежат по разные стороны от точки A)

Решение:

Пусть N1 — точка, симметричная точке N относительно K (см. рисунок).

"Квант" M1611

Тогда KCN1=△KDN, поэтому CN1=ND и N1CK=NDK=πABN. Заметим ещё, что MCK=πABM. Складывая полученные равенства, находим, что N1CM=MBN. Кроме того, из условия следует, что CM=MB и BN=ND (т.е. BN=CN1). Значит, MCN1=△MBN, откуда MN1=MN. Отрезок MK — медиана в равнобедренном треугольнике MNN1, поэтому MKN=90.

Замечание:

Задача имеет много других решений. Например, можно воспользоваться подобием треугольников MEK и KFN, где E и F — середины отрезков BC и BD соответственно. Эти треугольники имеют две пары взаимно перпендикулярных сторон
(EK и FN, ME и KF), следовательно, перпендикулярны и их третьи стороны.

Кроме того, соображения, использующие композицию поворотов, позволяют отказаться от дополнительного условия в задаче (о том, что точки C и D лежат по разные стороны от A), которое было задано лишь затем, чтобы избежать разбора различных случаев. Действительно, рассмотрим композицию поворотов RβMRαN — на углы α=DNB и β=BCM вокруг точек N и M соответственно (углы предполагаются ориентированными). Заметим, что α+β=180, поэтому RβMRαN=Zx — центральная симметрия относительно некоторой точки X. Но
Zx(D)=(RβMRαN)=RβM(B)=C,
поэтому X — середина отрезка CD, т. е. точка K. Если N1=ZK(N), то N1=(RβMRαN)(N), т. е. NMN1 — равнобедренный и MKN=90.

Д. Терешин

M1611. Построение прямого угла на пересекающихся окружностях: 1 комментарий

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *